
GDALR: An Efficient Model Duplication Attack on
Black Box Machine Learning Models

Nikhil Joshi
Security Researcher

Payatu Software Labs LLP
Pune, India

nikhilj@payatu.com

Rewanth Tammana
Security Consultant

Payatu Software Labs LLP
Pune, India

rewanth@payatu.com

Abstract—Trained Machine learning models are core com-
ponents of proprietary products. Business models are entirely
built around these ML powered products. Such products are
either delivered as a software package (containing the trained
model) or they are deployed on cloud with restricted API access
for prediction. In ML-as-a-service, users are charged per-query
or per-hour basis, generating revenue for businesses. Models
deployed on cloud could be vulnerable to Model Duplication
attacks. Researchers found ways to exploit these services and
clone the functionalities of black box models hidden in the cloud
by continuously querying the provided APIs. After successful
execution of attack, the attacker does not require to pay the
cloud service provider. Worst case scenario, attackers can also
sell the cloned model or use them in their business model.

Traditionally attackers use convex optimization algorithm like
Gradient Descent with appropriate hyper-parameters to train
their models. In our research we propose a modification to tra-
ditional approach called as GDALR (Gradient Driven Adaptive
Learning Rate) that dynamically updates the learning rate based
on the gradient values. This results in stealing the target model
in comparatively less number of epochs, decreasing the time and
cost, hence increasing the efficiency of the attack. This shows
that sophisticated attacks can be launched for stealing the black
box machine learning models which increases risk for MLaaS
based businesses.

Index Terms—Machine Learning, Model Stealing

I. INTRODUCTION

Machine learning and Deep learning is getting advanced and
increasingly popular these days. Deep learning has proved its
effectiveness in solving problems like classification, regression
and clustering. Deep learning models are currently used by
businesses to solve problems in a broad range of domain like
image/video processing [10], speech recognition [11], Cyber
security [12], medicine [13] and finance [14]. Businesses
invest considerable resources while training Machine Learning
models and hosting them. Hence, trained models possess high
business value and are treated as intellectual property.

Generally, trained models are made available to end users
via two major ways (a) With the installation package: where
the use case demands to run the models locally and need
to work without any network connectivity (b) Cloud based
models: The models are deployed on cloud and API access is
provided to end user, for which he/she will be charged. Models
provided with installation packages can be easily stolen by an
adversary. We assume that in both the cases ’a’ and ’b’ there

is very limited access to prediction APIs and are outputting
confidence scores of best class or best n classes.

Although, these APIs provide a restricted access to trained
models, outputs from APIs can still leak information about the
model. Adversary can interpret the output as Labels and use
them to train its own model as discussed in [1].

II. RELATED WORK

Stealing black box machine learning models is gaining
popularity these days. To replicate a black box model we need
several parameters like architecture, hyper-parameters, hyper-
surfaces, training data and so on. Attackers started cloning
these black box models solely based on their functionalities.

In 2005, D.Lowd and C.Meek first introduced these kind
of reverse engineering attacks [16] on linear classifiers of
machine learning models. They proposed efficient algorithms
to steal the parameters of the linear classifiers. Their proposed
approach requires a lot of querying to the API service which
is considered as disadvantageous in real world.

Later in 2016, F. Tram‘er proposed a different approach but
even that presumes the attacker knows the model type of the
target model. Efficient model duplication attacks are possible
if the service provider discloses the confidence score of the
labels [1]. Researchers were able to clone the model without
any discernible difference after 1,485 queries and just 650
queries in case of digit-recognition [1]. Attackers leveraged
this vulnerability and exploited several service providers and
started selling the cloned models at lower costs which made
the service providers lose a fortune.

Later in 2017, N Papernot discussed about these kind of
attacks on service providers like MetaMind but their technique
also presumes the attacker to have minimal information about
the target model like its model type [9].

Recently in 2018, Binghui Wang and Neil Zhenqiang Gong
proposed an intuitive way to steal the hyper-parameters from
black box models for different model types like ridge regres-
sion, logistic regression, support vector machine, and neural
Network using cross validation [8]. Attackers can use this
improved technique to clone the functionality of the models.

Our proposed work, efficiently produces a clone of target
model than methods discussed in this section, without knowing
the hyper-parameters of a black box model.



III. BUILDING MACHINE LEARNING MODELS

Machine learning models can be represented as F : X → Y .
Where, F is a function that maps Xi from a sample space X to
Yi from set of target categories Y . Every Xi is a d dimensional
feature vector represented as Xi = {x1, x2, x3, ..., xd} and Yi
is c dimensional vector Yi = {y1, y2, y3, ..., yc} where yi is
confidence score for respective class from c number of classes.
Convex optimization algorithms like [2] [6] [7]. or swarm
based optimizations [3] [4] [5] etc, can be used to train F .
Optimization algorithm minimizes the cost function Fc(Y, T )
where T is set of target class for samples in X and Y is
predicted class. Finally, we get an F that accurately maps
samples from X to its respective class ci for i ∈ [0, c − 1].
These models are deployed on cloud and are made available
to end user via an API.

IV. MODEL DUPLICATION ATTACK

Attacker’s aim is to replicate F as F ′ such that F ′(X) ≈
F (X). Attacker possesses a data set Xa with n samples
{Xa1, Xa2, Xa3, ..., Xan}. Xa is sent to F via prediction
APIs to produce Ya = {Ya1, Ya2, Ya3, ..., Yan}. Remember,
every query costs an amount to attacker, therefore attacker’s
goal is also to minimize n. Depending on how the APIs
were developed, Yai may or may not be a vector of size
c. APIs may only provide the confidence score for top k
classes Ca = {Ca1, Ca2, ..., Cak} or the best class. In this
case confidence score for every class not in Ca is considered
as 0 (zero). If API returns just the best class, then Yai for
predicted class is considered as 1 (one) and rest as 0 (zero).

Yai =

{
Cai, if score of ci ∈ Ca

0, otherwise
(1)

Ya resulting from (1) can be used by attacker to train F ′.

A. Traditional Model Stealing Approach

Traditional approach involves leveraging optimization tech-
niques discussed [2] [3] [4] [5] [6] to minimize the cost
mentioned in (2) to train F ′.

Fac = Loss(F ′(Xa), Ya) (2)

In our experimentation we have used Mean Squared Error
(3) and Log Loss (4) as Loss functions. But it can be replaced
by any of the standard cost function like Root mean squared
error, Mean Absolute Error, Mean Absolute Percentage Error,
etc.

MSE =
1

n

n∑
i=1

(F ′(Xa)− Ya)2 (3)

Logloss = − 1

n

n∑
i=1

c∑
j=1

(Yaij logF
′(Xa)ij) (4)

Following steps are executed by attacker to steal the model.
1) Select an appropriate model architecture with hyper-

parameters.

2) Query F using provided API and generate Ya for all
samples in Xa.

3) Use Ya as class labels and optimization algorithm to
train F ′ such that Loss (3) (4) is minimum.

4) Continue previous step until the stopping criterion is
met.

Above method is proven to be effective in [1] while stealing
models with black box access. But assumptions made in
(1) can be a drawback. Our modification to training method
overcomes the demerits of assuming (1) which is described in
next section.

V. GDALR: PROPOSED MODEL STEALING
APPROACH

Though the assumption (1) is made while building Ya, in
real world, model F always has some confidence score for
classes C ′a that are not visible in Ca, output from prediction
APIs. C ′a and Ca follow these properties

C ′a ∩ Ca = ∅ (5)

C ′a ∪ Ca = Ya (6)

If the target model F is designed to predict large number of
classes (consider a well known image classifiers Inception V3
and Resnet [17] classifies images to 1000 classes [15]) then
number of elements in C ′a is naturally larger than that of in
Ca. Also, sum(C ′a) is significantly larger than 0(zero). The
summation of the deviated values in the Loss function defined
in (3) and (4) causes noticeable increase in gradients which is
defined as

d

dθ
Loss

Increased gradients is undesired while replicating exact
boundaries learnt by F in hyperspace, it also makes the
Gradient Descent [6] to abruptly change the parameters θ of
F ′ for constant learning rate l, which hinders in effectively
training the cloned model F ′. Considering values of C ′a to be
zeros leads to inefficient duplication of F . In this case, one
can suggest smaller value of learning rate l, but that will take
more number of epochs and larger time to train F ′. To solve
this problem we propose a modification to Gradient Descent
that dynamically decreases learning rate l when gradients are
higher, causing the optimizer to less intensively adjust the
parameters θ of F ′

g′i = tanh(gi) (7)

facti = abs (g′i2π log10 (abs (g
′
i))) (8)

l′i = li · facti (9)

Where li, l
′
i and gi are learning rate, modified learning rate

and gradients at epoch i respectively. tanh transforms the
gradients gi to be in range (-1,1). Equation (8) generates
a factor facti in range (0,1.003851) that is used to scale
originally set learning rate li to obtain new learning rate l′i
and l′i is then used by optimizer to optimize θ for respective



epoch i. Figure 1 shows the relationship between gradients gi
and facti.

Fig. 1. fact vs g′

We have implemented proposed modification (9) to steal
models trained on multiple data sets and found that the mod-
ified optimizer is converging significantly better than original
Gradient Descent.

VI. EXPERIMENTAL SETUP AND RESULTS

To test our proposed method, we have considered three
of the well known classifiers: Logistic Regression, Multi
Layer Perceptrons (MLP) and Convolutional Neural Networks
(CNNs). Below mentioned datasets are used to train the
classifiers and generate our target model F . Wrapper was
developed on model F to return only the predicted class label.
This results in a simulated black box environment. Xa is a set
of random samples from X that was used to train F . Ya is
obtained by querying target model F . Later Xa and Ya are
used to train F ′.

The model F initializes the weights and bias on its creation.
To demonstrate proof of work (PoW) we explicitly initialize
the seed before generating random values. Pytorch [23] has
been used to demonstrate the attack. We initiated the duplica-
tion attack on the target model F using both traditional and
proposed methods. Loss values after every epoch are recorded.

In the results discussed below, TLoss and PLoss refers
to Loss value at final epoch for Traditional and Proposed
approaches (GDALR) respectively.

A. Iris Data set

We chose to test our proposed algorithm on logistic regres-
sion classifier with Iris dataset [18]. The total samples in the
Iris dataset are 150 and 33.3% of the entries are taken into
the testing set randomly. The data is labelled into 3 classes
representing different species of Iris flower.

To prove the working efficiency of our proposed method,
we have experimented with different learning rates with values

0.01, 0.05 for 400 epochs. Mean Squared Error (MSE) (3) was
selected as loss function.

The results for Duplication Attack on Logistic Regression
model are as follows -

For l = 0.01, epochs = 400

• TLoss = 0.0849
• PLoss = 0.0317, as shown in 2

Fig. 2. learning rate = 0.01

For l = 0.05, epochs = 400

• TLoss = 0.1233
• PLoss = 0.0342, as shown in 3

Fig. 3. learning rate = 0.05

B. Liver Disease Data set

Multi Layer Perceptron (MLP) was trained on liver disease
dataset. The total samples in liver disease dataset [21] are 345
and 10% of the entries are taken into the testing set.

We have performed classification with different learning
rates: 0.001, 0.0001, 0.00001 for 400 epochs with Mean
Squared Error (MSE) (3) as loss function. Below mentioned
Layer configuration is used to build F ′



• layer 1: Linear Input layer with 6 nodes and relu activa-
tion function

• layer 2: Linear layer with 16 nodes and relu activation
function

• layer 3: Linear layer with 2 nodes and softmax activation
function

Results for MLP on Liver disease dataset are as follows -
For l = 0.001, epochs = 50

• TLoss = 0.0014
• PLoss = 5.444× 10−5, as shown in 4

Fig. 4. learning rate = 0.001

For l = 0.0001, epochs = 400

• TLoss = 5.934× 10−5

• PLoss = 3.913× 10−5, as shown in 5

Fig. 5. learning rate = 0.0001

For l = 0.00001, epochs = 400

• TLoss = 0.0219
• PLoss = 0.0007, as shown in 6

Fig. 6. learning rate = 0.00001

C. Statlog Land satellite Data set

Our proposed method GDALR was tested to steal Con-
volutional Neural Networks (CNNs) trained on land satellite
dataset [22]. The total entries in land satellite dataset are 6435
and 3.1% of the entries are taken into the testing set. The data
is labelled into 7 classes.

CNN was trained using different learning rates: 0.001,
0.0001, 0.00001 for 400 epochs with log loss or cross entropy
as loss function (4). Following layer configurations is used for
F ′ CNN.

• layer 1: Convolutional layer with 64 output channels and
(2× 2) kernel

• layer 2: 2D Avg Pooling layer with kernel size 2
• layer 3: Convolutional layer with 128 output channels and

(2× 2) kernel
• layer 4: 2D Avg. Pooling layer with kernel size 4
• layer 5: Linear layer with 7 output nodes

The results for Duplication Attack on CNN model are as
follows -

For l = 0.001, epochs = 400

• TLoss = 0.0019
• PLoss = 3.576× 10−7, as shown in 7



Fig. 7. learning rate = 0.001

For l = 0.0001, epochs = 400

• TLoss = 0.0011
• PLoss = 3.993× 10−5, as shown in 8

Fig. 8. learning rate = 0.0001

For l = 0.00001, epochs = 400

• TLoss = 0.0073
• PLoss = 4.184× 10−5, as shown in 9

Fig. 9. learning rate = 0.00001

VII. CONCLUSIONS

In this paper, we analyze different approaches to steal black-
box learning models. Considering the prior work from other
researchers in this area, we demonstrated how an attacker can
achieve better performance while stealing machine learning
models. We proposed a new method, GDALR (Gradient
Driven Adaptive Learning Rate) to perform attack with greater
efficiency by modifying the learning rate dynamically after
each epoch based on the gradient values.

To test the reliability of GDALR, we experimented with
three different classifiers, Linear Regression, MLP (Multi
Layer Perceptrons) and CNNs (Convolutional Neural Net-
works) on different learning rates.

Logistic regression is used for classification on Iris dataset,
Fig 2 and 3 show that GDALR method converges better for
all learning rates while an undesired increase in loss values is
observed with traditional approach.

Faster convergence is observed when MLP classifiers are
trained on Liver disease dataset. GDALR powered method
achieves better loss than traditional method in equal number
of epochs as shown in 4, 5 and 6.

Also, on complex classifiers like CNN trained on Statlog
land satellite dataset, Fig. 7 and 8 show that optimization with
GDALR not only achieves better loss values but also converges
with nearly no fluctuations.

Through our experiments, we illustrated the significant
increase in performance of attacks, such as low loss values
and better convergence in less number of epochs. Our research,
GDALR with its increased performance explains the serious
need to rewrite the current countermeasures for MLaaS, an
obligatory and interesting area for future work.

REFERENCES

[1] Tramr, Florian, Fan Zhang, Ari Juels, Michael K. Reiter,
and Thomas Ristenpart. ”Stealing machine learning models
via prediction apis.” In 25th USENIX Security Symposium
(USENIX Security 16), pp. 601-618. 2016. [Online]. Available:
https://www.usenix.org/system/files/conference/usenixsecurity16/



[2] Kingma, Diederik P., and Jimmy Ba. ”Adam: A method for stochastic
optimization.” arXiv preprint arXiv:1412.6980 (2014). [Online] Avail-
able: https://arxiv.org/pdf/

[3] Trelea, Ioan Cristian. ”The particle swarm optimization algorithm:
convergence analysis and parameter selection.” Information processing
letters 85, no. 6 (2003): 317-325.

[4] Dorigo, Marco, Luca Maria Gambardella, Mauro Birattari, Alcherio
Martinoli, Riccardo Poli, and Thomas Sttzle, eds. Ant Colony Opti-
mization and Swarm Intelligence: 5th International Workshop, ANTS
2006, Brussels, Belgium, September 4-7, 2006, Proceedings. Vol. 4150.
Springer, 2006.

[5] Davis, Lawrence. ”Handbook of genetic algorithms.” (1991).
[6] Bottou, Lon. ”Large-scale machine learning with stochastic

gradient descent.” In Proceedings of COMPSTAT’2010, pp.
177-186. Physica-Verlag HD, 2010. [Online]. Available:
http://khalilghorbal.info/assets/spa/papers/

[7] Boyd, Stephen, and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004. [Online]. Available:
https://pdfs.semanticscholar.org/a756/

[8] Wang, Binghui, and Neil Zhenqiang Gong. ”Stealing hyperparameters
in machine learning.” In 2018 IEEE Symposium on Security and Privacy
(SP), pp. 36-52. IEEE, 2018. [Online]. Available: https://arxiv.org/pdf/

[9] Papernot, Nicolas, Patrick McDaniel, Ian Goodfellow, Somesh Jha,
Z. Berkay Celik, and Ananthram Swami. ”Practical black-box attacks
against machine learning.” In Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, pp. 506-519.
ACM, 2017. [Online]. Available: https://arxiv.org/pdf/

[10] Young, Tom, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria.
”Recent trends in deep learning based natural language processing.”
IEEE Computational IntelligenCe Magazine 13, no. 3 (2018): 55-75.
[Online]. Available: https://ieeexplore.ieee.org/iel7/10207/8416963/

[11] Zhang, Zixing, Jrgen Geiger, Jouni Pohjalainen, Amr El-Desoky Mousa,
Wenyu Jin, and Bjrn Schuller. ”Deep learning for environmentally
robust speech recognition: An overview of recent developments.” ACM
Transactions on Intelligent Systems and Technology (TIST) 9, no. 5
(2018): 49. [Online]. Available: https://arxiv.org/pdf/

[12] HB, Barathi Ganesh, Prabaharan Poornachandran, and Soman
KP. ”Deep-Net: Deep Neural Network for Cyber Security Use
Cases.” arXiv preprint arXiv:1812.03519 (2018). [Online]. Available:
https://arxiv.org/pdf/

[13] Shickel, Benjamin, Patrick James Tighe, Azra Bihorac, and Parisa
Rashidi. ”Deep EHR: A survey of recent advances in deep learning
techniques for electronic health record (EHR) analysis.” IEEE journal
of biomedical and health informatics 22, no. 5 (2018): 1589-1604.

[14] Heaton, J. B., Nicholas G. Polson, and Jan Hendrik Witte. ”Deep
learning in finance.” arXiv preprint arXiv:1602.06561 (2016).

[15] Szegedy, Christian, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. ”Rethinking the inception architecture for computer
vision.” In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 2818-2826. 2016.

[16] Lowd, Daniel, and Christopher Meek. ”Adversarial learning.” In Pro-
ceedings of the eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining, pp. 641-647. ACM, 2005.

[17] Szegedy, Christian, Sergey Ioffe, Vincent Vanhoucke, and Alexander
A. Alemi. ”Inception-v4, inception-resnet and the impact of residual
connections on learning.” In Thirty-First AAAI Conference on Artificial
Intelligence. 2017.

[18] Fisher, Ronald. ”Iris flower dataset.”, 1936.
[19] Devasena, C. Lakshmi, T. Sumathi, V. V. Gomathi, and M.

Hemalatha. ”Effectiveness evaluation of rule based classifiers
for the classification of iris data set.” Bonfring International
Journal of Man Machine Interface 1, no. Special Issue
Inaugural Special Issue (2011): 05-09. [Online]. Available:
http://www.journal.bonfring.org/papers/mmi/volume1/BIJMMI-01-
1002.pdf

[20] Ramana, Bendi Venkata, M. Surendra Prasad Babu, and N. B.
Venkateswarlu. ”A critical study of selected classification algorithms
for liver disease diagnosis.” International Journal of Database Man-
agement Systems 3, no. 2 (2011): 101-114. [Online]. Available:
http://www.academia.edu/download/38398988/3211ijdms07.pdf

[21] BUPA Liver Disorders Dataset. UCI repository of machine learn-
ing databases. Available from https://archive.ics.uci.edu/ml/machine-
learning-databases/liver-disorders/bupa.data

[22] Statlog (Landsat Satellite) Dataset, UCI Machine Learning Repository.

[23] Paszke, Adam, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and
Adam Lerer. ”Automatic differentiation in pytorch.” (2017). [Online].
Available: https://openreview.net/pdf?id=BJJsrmfCZ


