
COMPROMISING
ORGANIZATIONAL
SYSTEMS
THROUGH
CHAINING
ATTACKS

REWANTH TAMMANA
Security Researcher
Payatu Software Labs LLP

ABOUT ME

● Security Consultant and Researcher

● CKA and CKAD certified

● Trainer at Nullcon conference

● Speaker at multiple international security conferences including HITB (Dubai ‘18 &

Amsterdam ‘19), CRESTCON (London ’19), PHDays (Moscow ‘19), Bsides (Egypt ‘19), etc

● Nmap developer (added 17,000+ LoC)

● GSoCer (Google Summer of Code)

● Published an IEEE paper on ML & security

● Full stack developer

SETTING THE EXPECTATIONS

What not to expect

- Tutorial style intro to different vulnerabilities

- Different AV bypass techniques, pivoting tips, etc

- Some magic that will turn you into hacker by the end of 30/40 min

What to expect

- Overall security posture

- Architectural view of things

- Different layers of protection

- Leveraging human psychology

- Walkthrough of our entire journey

OUTLINE OF TODAY’S TALK

1. Reconnaissance to SQL Injection

2. SQL Injection to Remote Code Execution (RCE)

3. Bypassing up-to-date Anti-Virus (AV) to gain persistent access

4. Remote Code Execution to Internal Systems Compromise

5. Internal Systems Compromise to support Gmail 2FA bypass

SQL Injection

https://abc.com?id=1 -> SELECT * FROM users WHERE id=1

https://abc.com?id=11111 -> SELECT * FROM users WHERE id=11111

https://abc.com?id=11111 OR 1=1 -> SELECT * FROM users WHERE id=11111 OR 1=1

https://abc.com?id=11111;DROP TABLE users;

SELECT * FROM users WHERE id=11111;DROP TABLE users;

https://abc.com/?id=1
http://abc
http://def
http://gef

Reconnaissance to SQL Injection

Error based SQL Injection

Reconnaissance to SQL Injection

Error based SQL Injection

Multiple entry points were identified

● Forgot page (Unauthenticated)

● Internal search functionality (Authenticated)

Leveraging SQL Injection

Expected architecture design

Expected architecture design

Expected architecture design

SQL injection to remote access

Trying to gain reverse TCP shell with metasploit.

No shell. WTF

Issues faced with an up-to-date Anti Virus

Everytime session is terminated within 1-5 seconds

More enumeration for 1 full working day

Tried checking for

● Open ports

● Outdated Services

● 3rd party apps

● Everything

● Anything

That can be chained

with SQL Injection

More enumeration for 1 full working day

RESULT

More enumeration for 1 full working day

ZERO LEADS

INSPIRATIONAL QUOTE

WHEN YOU ARE STUCK WITH A PROBLEM,
READ IT FROM THE BEGINNING.

- ANONYMOUS

Back to square one again.

Next day, we started again from square
ZERO with keen observation

After unleashing a new point, we realized

What we missed ?

Expected architecture design

What we missed ?

Reverse shell connection origin IP is DIFFERENT from web server’s IP

Expected architecture design

Concluded architecture

Concluded architecture

TWO DIFFERENT SERVERS
ONE FOR WEB SERVER AND OTHER FOR DATABASE

Shodan once again for rescue

Shodan once again for rescue

Did you see that?

3389 Port OPEN on new IP :-)

Application Architecture View

Application Architecture View

Conclusions so far

● Web server - 80, 443 open

● New server - 1443, 3389 open

1443 - MS SQL SERVER

3389 - RDP CONNECTION

But still

These conclusions are fascinating

But our session gets terminated in

1-5 seconds by AV.

How to fix that?

Think for a min :-)

Way around with Anti-Virus (AV) checks

Remember open RDP service?
We will exploit/leverage the open RDP service to gain persistent access

Way around with Anti-Virus (AV) checks

Remember open RDP service?
We will exploit/leverage the open RDP service to gain persistent access

But still

- No RDP user login credentials

- No public RCE exploits for RDP service running on the server

Anti-Virus terminates the interactive shell

Leveraging open RDP service

Anti-Virus terminates the interactive shell

Leveraging open RDP service

Anti-Virus terminates the interactive shell

Tricky point (back to Operating System basics):
A process is forked by parent. Even if the parent gets killed, the child process still continues to run

Leveraging open RDP service

Anti-Virus terminates the interactive shell

Tricky point (back to Operating System basics):
A process is forked by parent. Even if the parent gets killed, the child process still continues to run

In our case, interactive terminal gets terminated but initiated PROCESS DOESN’T :-)

Leveraging open RDP service

Anti-Virus terminates the interactive shell

Tricky point (back to Operating System basics):
A process is forked by parent. Even if the parent gets killed, the child process still continues to run

In our case, interactive terminal gets terminated but initiated PROCESS DOESN’T :-)

How can we leverage this functionality for our use case?

Leveraging open RDP service

- Can we try to create a new user via SQL injection?

Leveraging open RDP service

- Can we try to create a new user via SQL injection?

- And then re-use the new credentials to login into remote server via RDP?

Leveraging open RDP service

- Can we try to create a new user via SQL injection?

- And then re-use the new credentials to login into remote server via RDP?

Creating a new user via SQL Injection

Executed below commands to run in background

$ net user payatupt PayatuP@s$w03d /add

$ net localgroup Administrators payatupt /add

$ net localgroup "Remote Management Users" payatupt /add

Successful RDP login with new credentials

Successful RDP login with new credentials

ENUMERATION OF INTERNAL SYSTEMS

● Performed Nmap scans to discover active hosts on network

● Used mimikatz to gain NT AUTHORITY privileges

● Extracted plain text passwords of other users using “sekurlsa::logonpasswords”
● Shows password information for all currently and recently logged on users and

computers

● We even dumped NTLM hashes and re-used them with Pass-The-Hash (PTH) technique to

gain other user’s access

● With this lot of information, we did RDP into all internal system(s).

● We even got our hands on their data backup servers as well.

INTERESTING OBSERVATIONS DURING
ENUMERATION

● Access to password protected internal FTP servers

● MariaDB login credentials, support email SMTP automation script, API keys of payment

services, API keys of other sensitive services

● IP address of multiple other services (not linked to web interface)

● Read/Write/Delete access to 536 GB of user data

● Read/Write/Delete access to 2 TB of backup data

● Gained access to customers PI, PII information (considered highly sensitive and private)

SUPPORT GMAIL ACCOUNT

Ever wondered how many emails are left unread on support desk email of multi-million dollar

company?

SUPPORT GMAIL ACCOUNT

Ever wondered how many emails are left unread on support desk email of multi-million dollar

company?

In this case, we found 280,125 unread emails on the company’s support desk email ☺

EXPLORING SUPPORT GMAIL ACCOUNT

● We obtained support email credentials from an automation email script we found in their

data backup server

● We tried logging in into their system with this support email id and password

● But the application is protected with 2FA

EXPLORING SUPPORT GMAIL ACCOUNT

● We obtained support email credentials from an automation email script we found in their

data backup server

● We tried logging in into their system with this support email id and password

● But the application is protected with 2FA

BYPASSING GMAIL 2FA PROTECTION

Since we don’t have their mobile device to

view SMS, we clicked on “Confirm your

Recovery phone number”

BYPASSING GMAIL 2FA PROTECTION

Google isn’t that stupid to forget

rate limiter on this field or OTP field.

Google is AWESOME :-)

BYPASSING GMAIL 2FA PROTECTION

But what now?

Is there a way to get the

right recovery phone number or

bypass this check and gain

further access ?

BYPASSING GMAIL 2FA PROTECTION

But what now?

Is there a way to get the

right recovery phone number or

bypass this check and gain

further access ?

Think for a min :-)

STOP HERE ???

BYPASSING GMAIL 2FA PROTECTION

BYPASSING GMAIL 2FA PROTECTION

EXPLOITING LAZY HUMAN PSYCHOLOGY HERE

BYPASSING GMAIL 2FA PROTECTION

● If the database contains all users information, there are high chances for the company

employees to have an account as well. There are 58422 users.

BYPASSING GMAIL 2FA PROTECTION

● If the database contains all users information, there are high chances for the company

employees to have an account as well. There are 58422 users.

● The developer or support person likely must have used his/her personal number for 2 FA

Human Easy/Lazy Psychology

BYPASSING GMAIL 2FA PROTECTION

● We have access to database (RDP hack, remember?) with 536 GB of user data and 2 TB of

backup data with sensitive PI, PII information.

BYPASSING GMAIL 2FA PROTECTION

● We have access to database (RDP hack, remember?) with 536 GB of user data and 2 TB of

backup data with sensitive PI, PII information.

● Users PII information includes their personal phone numbers too :-)

BYPASSING GMAIL 2FA PROTECTION

● We have access to database (RDP hack, remember?) with 536 GB of user data and 2 TB of

backup data with sensitive PI, PII information.

● Users PII information includes their personal phone numbers too :-)

BYPASSING GMAIL 2FA PROTECTION

Observe the last two digits of phone number

BYPASSING GMAIL 2FA PROTECTION

BACK TO SQL BASICS

Assuming our above human psychology theorem to do magic, we executed a simple SQL search

for filtering users based on phone numbers

SELECT DISTINCT PhoneNo FROM <aaa>.<bbb> WHERE PhoneNo like ‘%31’

Just with this one query, the target phone numbers dropped from 58422 to 36 users.

BYPASSING GMAIL 2FA PROTECTION

● Now we have to just brute force the recovery phone number against 36 phone numbers.

BYPASSING GMAIL 2FA PROTECTION

● Now we have to just brute force the recovery phone number against 36 phone numbers.

● But google is smart enough to block us after 3 failed attempts.

BYPASSING GMAIL 2FA PROTECTION

● Now we have to just brute force the recovery phone number against 36 phone numbers.

● But google is smart enough to block us after 3 failed attempts.

● Logically, we sorted 36 results based on account creation date.

BYPASSING GMAIL 2FA PROTECTION

● Now we have to just brute force the recovery phone number against 36 phone numbers.

● But google is smart enough to block us after 3 failed attempts.

● Logically, we sorted 36 results based on account creation date.

● We got a hit on the 4th number in the list.

BYPASSING GMAIL 2FA PROTECTION

● Now we have to just brute force the recovery phone number against 36 phone numbers.

● But google is smart enough to block us after 3 failed attempts.

● Logically, we sorted 36 results based on account creation date.

● We got a hit on the 4th number in the list.

BYPASSING GMAIL 2FA PROTECTION
(280,125 unread emails on support account)

PRO TAKEAWAY IMO

DO NOT, DO NOT, DO NOT EVER RUN DATABASE SERVICES WITH ADMINISTRATIVE
PRIVILEGES

MY FAVOURITE PART IN THIS HACK

- AV was terminating interactive shells

- RDP service running and open to public

- No RDP login credentials with us

- SQL server was running with administrative privileges

- Leveraged SQL injection and created a new user with administrator privileges

- An administrator user can dump hashes, perform PTH attacks, gain access to plaintext

passwords, and perform lot of other escalations

- Access to backup server as well

- Gmail 2FA bypass

MY FAVOURITE PART IN THIS HACK

- AV was terminating interactive shells

- RDP service running and open to public

- No RDP login credentials with us

- SQL server was running with administrative privileges
- Leveraged SQL injection and created a new user with administrator privileges

- An administrator user can dump hashes, perform PTH attacks, gain access to plaintext

passwords, and perform lot of other escalations

- Access to backup server as well

- Gmail 2FA bypass

MY FAVOURITE PART IN THIS HACK

- AV was terminating interactive shells

- RDP service running and open to public
- No RDP login credentials with us

- SQL server was running with administrative privileges

- Leveraged SQL injection and created a new user with administrator privileges

- An administrator user can dump hashes, perform PTH attacks, gain access to plaintext

passwords, and perform lot of other escalations

- Access to backup server as well

- Gmail 2FA bypass

WHO’S RESPONSIBLE FOR THIS?

Is this the mistake of just

● Development team?

● Network engineers?

● Operation team?

● Hackers?

● Computers?

That’s a separate discussion,

I will leave it for you to think, decide and DM me :-)

RECOMMENDED MITIGATIONS

● Use of parameterized queries to prevent SQL injection.

● Services handle user data (For ex, SQL Server service) should be running with low

privileges to prevent escalation attacks

● Do not use same passwords for all services

● Try to use a separate phone number for 2 FA and keep it isolated from personal use

● Do not expose unwanted services running on backend to internet

● Even if exposed, configure firewall to allow whitelisted IPs to connect to the service

ANY QUESTIONS?

THANK YOU ALL FOR HEARING SO FAR

Contact:

Google: Rewanth Cool

Github: Rewanth Cool

Twitter: @Rewanth_Cool

LinkedIn: /in/rewanthcool/

https://www.linkedin.com/in/rewanthcool/

